Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality is changing and discuss knock-on ecosystem service impacts. Although direct evidence is sparse, there are suggestions that ice quality is diminishing across the Northern Hemisphere, encompassing declining ice thickness, decreasing black ice and increasing white ice. These changes are projected to continue in the future, scaling with global temperature increases, and driving considerable impacts to related ecosystem services. Rising proportions of white ice will markedly reduce bearing strength, implying more dangerous conditions for transportation (limiting operational use of many winter roads) and recreation (increasing the risk of fatal spring-time drownings). Shifts from black to white ice conditions will further reduce the amount of light reaching the water column, minimizing primary production, and altering community composition to favour motile and mixotrophic species; these changes will affect higher trophic levels, including diminished food quantity for zooplankton and fish, with potential developmental consequences. Reliable and translatable in situ sampling methods to assess and predict spatiotemporal variations in ice quality are urgently needed.more » « less
-
Abstract Wildfire smoke covers entire continents, depositing aerosols and reducing solar radiation fluxes to millions of freshwater ecosystems, yet little is known about impacts on lakes. Here, we quantified trends in the spatial extent of smoke cover in California, USA, and assessed responses of gross primary production and ecosystem respiration to smoke in 10 lakes spanning a gradient in water clarity and nutrient concentrations. From 2006 − 2022, the maximum extent of medium or high-density smoke occurring between June-October increased by 300,000 km2. In the three smokiest years (2018, 2020, 2021), lakes experienced 23 − 45 medium or high-density smoke days, characterized by 20% lower shortwave radiation fluxes and five-fold higher atmospheric fine particulate matter concentrations. Ecosystem respiration generally declined during smoke cover, especially in low-nutrient, cold lakes, whereas responses of primary production were more variable. Lake attributes and seasonal timing of wildfires will mediate the effects of smoke on lakes.more » « less
-
Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. Lake primary production is strongly controlled by inputs of nutrients and colored dissolved organic matter. While past studies have developed mathematical models of this nutrient-color paradigm, broad empirical tests of these models are scarce. We compiled data from 58 diverse and globally distributed and mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. These lakes varied widely in size (0.02-2300 km2), pelagic gross primary production (20-8000 mg C m-2 d-1), and other characteristics. The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP and ER derived from those data. In addition, the data package includes median in-lake and stream concentrations of dissolved organic carbon and total phosphorus for a subset of 18 of those lakes.more » « less
-
Abstract For over a century, ecologists have used the concept of trophic state (TS) to characterize an aquatic ecosystem's biological productivity. However, multiple TS classification schemes, each relying on a variety of measurable parameters as proxies for productivity, have emerged to meet use‐specific needs. Frequently, chlorophyll a, phosphorus, and Secchi depth are used to classify TS based on autotrophic production, whereas phosphorus, dissolved organic carbon, and true color are used to classify TS based on both autotrophic and heterotrophic production. Both classification approaches aim to characterize an ecosystem's function broadly, but with varying degrees of autotrophic and heterotrophic processes considered in those characterizations. Moreover, differing classification schemes can create inconsistent interpretations of ecosystem integrity. For example, the US Clean Water Act focuses exclusively on algal threats to water quality, framed in terms of eutrophication in response to nutrient loading. This usage lacks information about non‐algal threats to water quality, such as dystrophication in response to dissolved organic carbon loading. Consequently, the TS classification schemes used to identify eutrophication and dystrophication may refer to ecosystems similarly (e.g., oligotrophic and eutrophic), yet these categories are derived from different proxies. These inconsistencies in TS classification schemes may be compounded when interdisciplinary projects employ varied TS frameworks. Even with these shortcomings, TS can still be used to distill information on complex aquatic ecosystem function into a set of generalizable expectations. The usefulness of distilling complex information into a TS index is substantial such that usage inconsistencies should be explicitly addressed and resolved. To emphasize the consequences of diverging TS classification schemes, we present three case studies for which an improved understanding of the TS concept advances freshwater research, management efforts, and interdisciplinary collaboration. To increase clarity in TS, the aquatic sciences could benefit from including information about the proxy variables, ecosystem type, as well as the spatiotemporal domains used to classify TS. As the field of aquatic sciences expands and climatic irregularity increases, we highlight the importance of re‐evaluating fundamental concepts, such as TS, to ensure their compatibility with evolving science.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract The rate of technological innovation within aquatic sciences outpaces the collective ability of individual scientists within the field to make appropriate use of those technologies. The process of in situ lake sampling remains the primary choice to comprehensively understand an aquatic ecosystem at local scales; however, the impact of climate change on lakes necessitates the rapid advancement of understanding and the incorporation of lakes on both landscape and global scales. Three fields driving innovation within winter limnology that we address here are autonomous real‐time in situ monitoring, remote sensing, and modeling. The recent progress in low‐power in situ sensing and data telemetry allows continuous tracing of under‐ice processes in selected lakes as well as the development of global lake observational networks. Remote sensing offers consistent monitoring of numerous systems, allowing limnologists to ask certain questions across large scales. Models are advancing and historically come in different types (process‐based or statistical data‐driven), with the recent technological advancements and integration of machine learning and hybrid process‐based/statistical models. Lake ice modeling enhances our understanding of lake dynamics and allows for projections under future climate warming scenarios. To encourage the merging of technological innovation within limnological research of the less‐studied winter period, we have accumulated both essential details on the history and uses of contemporary sampling, remote sensing, and modeling techniques. We crafted 100 questions in the field of winter limnology that aim to facilitate the cross‐pollination of intensive and extensive modes of study to broaden knowledge of the winter period.more » « less
-
Abstract Wildfire smoke often covers areas larger than the burned area, yet the impacts of smoke on nearby aquatic ecosystems are understudied. In the summer of 2018, wildfire smoke covered Castle Lake (California, USA) for 55 days. We quantified the influence of smoke on the lake by comparing the physics, chemistry, productivity, and animal ecology in the prior four years (2014–2017) to the smoke year (2018). Smoke reduced incident ultraviolet-B (UV-B) radiation by 31% and photosynthetically active radiation (PAR) by 11%. Similarly, underwater UV-B and PAR decreased by 65 and 44%, respectively, and lake heat content decreased by 7%. While the nutrient limitation of primary production did not change, shallow production in the offshore habitat increased by 109%, likely due to a release from photoinhibition. In contrast, deep-water, primary production decreased and the deep-water peak in chlorophylladid not develop, likely due to reduced PAR. Despite the structural changes in primary production, light, and temperature, we observed little significant change in zooplankton biomass, community composition, or migration pattern. Trout were absent from the littoral-benthic habitat during the smoke period. The duration and intensity of smoke influences light regimes, heat content, and productivity, with differing responses to consumers.more » « less
-
Abstract Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient‐color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high‐frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production.more » « less
An official website of the United States government
